

Potassium T

M340

0.7 - 16 mg/L K

Tetraphenylborat Turbidity

Instrument specific information

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

Instrument Type	Cuvette	λ	Measuring Range
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	0.7 - 16 mg/L K
XD 7000, XD 7500	ø 24 mm	730 nm	0.7 - 16 mg/L K

Material

Required material (partly optional):

Reagents	Packaging Unit	Part Number
Potassium-T	Tablet / 100	515670BT
Potassium-T	Tablet / 250	515671BT

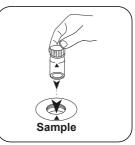
Application List

- · Waste Water Treatment
- · Drinking Water Treatment
- · Raw Water Treatment

Notes

 Potassium causes a finely distributed turbidity with a milky appearance. Individual particles are not attributable to the presence of Potassium.

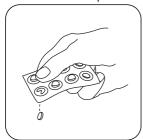
Determination of Potassium with Tablet


Select the method on the device.

For this method, a ZERO measurement does not have to be carried out every time on the following devices: XD 7000, XD 7500

Fill 24 mm vial with 10 mL Close vial(s). sample.

Place sample vial in the sample chamber. • Pay attention to the positioning.



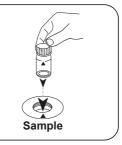
Press the ZERO button.

Remove the vial from the sample chamber.

For devices that require no ZERO measurement, start here.

Add POTASSIUM T tablet.

Crush tablet(s) by rotating slightly.



Close vial(s).

Dissolve tablet(s) by inverting.

Place **sample vial** in the sample chamber. • Pay attention to the positioning.

Press the **TEST** (XD: **START**)button.

Wait for 3 minute(s) reaction time.

Once the reaction period is finished, the measurement takes place automatically. The result in mg/L Potassium appears on the display.

Chemical Method

Tetraphenylborat Turbidity

Appendix

Calibration function for 3rd-party photometers

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	6.25019 • 10 ⁻¹	6.25019 • 10 ⁻¹
b	6.44037 • 10 ⁺⁰	1.38468 • 10+1
С	-1.32631 • 10 ⁺⁰	-6.13087 • 10 ⁺⁰
d	4.95714 • 10 ⁻¹	4.92659 • 10⁺0
е		
f		

Method Validation

Limit of Detection	0.04 mg/L
Limit of Quantification	0.13 mg/L
End of Measuring Range	16 mg/L
Sensitivity	6.11 mg/L / Abs
Confidence Intervall	0.54 mg/L
Standard Deviation	0.24 mg/L
Variation Coefficient	2.89 %

Bibliography

R.T. Pflaum, L.C. Howick (1956), Spectrophotometric Determination of Potassium with Tetraphenylborate, Anal. Chem., 28 (10), pp. 1542-1544